
Aboa Centre for Economics

Discussion Paper No. 51
Turku 2009

Haruo Imai – Hannu Salonen
Limit Solutions for

Finite Horizon
Bargaining Problems



Copyright © Authors

ISSN 1796-3133

Printed in Uniprint
Turku 2009



Haruo Imai – Hannu Salonen
Limit Solutions for Finite Horizon

Bargaining Problems

Aboa Centre for Economics
Discussion Paper No. 51

June 2009

ABSTRACT

We investigate a random proposer bargaining game with a dead
line. A bounded time interval is divided into bargaining periods of
equal  length  and  we  study  the  limit  of  the  subgame  perfect
equilibrium outcome as the number of bargaining periods goes to
infinity while the dead line is kept fixed. This limit is close to the
Raiffa solution when the time horizon is very short. If the dead line
goes to infinity the limit outcome converges to the time preference
Nash solution. The limit outcome is given an axiomatic
characterization as well.

JEL Classification: C71, C72, C78
Keywords: Nash solution, Raiffa solution, bargaining



Contact information

Haruo Imai, Kyoto Institute of Economic Research, Kyoto
University, Kyoto, Japan, e-mail: imai(at)kier.kyotou.ac.jp
Hannu Salonen, Department of Economics and PCRC, University
of Turku, 20014 Turku, Finland, e-mail: hansal(at)utu.fi

Acknowledgements

We thank W. Thomson and J. Urabe for useful comments and
discussions.  Imai gratefully acknowledges supports by the Grant-
in-Aid for Scientific Research (C) 818053800002 and (A) 16203011.
Salonen thanks the Yrjö Jahnsson Foundation for financial support.



1 Introduction

We investigate a random proposer bargaining game with a dead line. A bounded time

interval is divided into bargaining periods of equal length and we study the limit of the

subgame perfect equilibrium outcome as the number of bargaining periods goes to infinity

while the dead line is kept fixed. This limit is close to the Raiffa solution when the time

horizon is very short. If the dead line goes to infinity the limit outcome converges to

the time preference Nash solution (Chae 1993). The limit outcome is given an axiomatic

characterization as well.

There are several papers analyzing the problem how the outside alternatives available

to the bargainers affect the outcome of the bargaining game (see e.g. Shaked and Sutton

(1984) and Binmore, Rubinstein, and Wolinsky (1986)). These studies show that if impasse

is the best alternative, there is no chance of bargaining break down and the bargaining

possibility remains indefinitely, then the best alternative has no effect. A natural setting

where the best alternative outcome could affect the bargained outcome is the case when

the surplus associated with the bargaining problem vanishes in finite time and after that

bargainers have to take their best alternatives.

It should be noted that we are not dealing with the issues concerning the ”deadline

effect” (c.f. Fershtman and Seidman 1993; Roth, Murnighan and Schoumaker 1988; Ma

and Manove 1993; Simsek and Yildiz 2008). In this paper finite horizon and dead line mean

the same thing: the bargaining opportunities vanish in finite time. An instance for such

dead line is given by a special tax treatment offered up till a certain date. If this is the

case of a tax-break for a corporate merger, then after a certain date, such a break becomes

not applicable for firms bargaining over the terms of the merger.

It is well known that as the deadline tends to infinity, the subgame perfect equilibrium

outcome of the random offer or alternating offer bargaining game converges to the one of

the corresponding infinite horizon game (Binmore 1985). Moreover this outcome converges

to the Nash bargaining solution as the discount factor goes to one. (All these results are

established in Rubinstein (1982) and Binmore (1987)).

Following Stahl (1972), Sjostrom (1991) analyzed a related model. A finite time interval

is divided into bargaining periods of equal length. When the number of periods goes to

infinity the limit of bargaining outcomes remains close to the (discrete) Raiffa solution

(Raiffa 1953, 2002). A simplified version of this solution for a piecewise linear problems

was discussed in Raiffa (1953). An axiomatic foundation for this solution is given in Salonen

(1986). The Raiffa solution can be obtained as the limit of the following procedure. In

the beginning, each agent demands his ”ideal point” which is the best outcome for him

satisfying individual rationality constraints. Then the average of these two demands are

given as a reference point, and players make new demands with the constraint that nobody
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gets less than this reference point, and so on. The limit outcome of this procedure is the

Raiffa solution1.

Sjostrom (1991) proved that without discounting, the subgame perfect equilibrium out-

comes converge to the Raiffa solution as the number of bargaining periods increases without

limit. He showed also that with very little discounting the limit outcome lies very close

to the Raiffa solution. Of course with constant non-negligible discounting this result does

not restrain the outcome much and in fact as the dead line goes to infinity, the outcome

converges to the Nash solution. In this paper, we try to reconcile these two observations by

investigating more closely the limiting outcomes for finite horizon and positive discounting.

In the latter half of the paper, we attempt to axiomatize the obtained limit solution,

in part due to the diversity of the solutions arising from the strategic approach. To our

knowledge, not much effort has been devoted to include the time dimension in the axiomatic

bargaining theory.

The paper is organized in the following way. Notation and some preliminary observa-

tions are presented in Section 2. The main results concerning the strategic model are given

in Section 3. Section 4 is devoted to the axiomatic approach and Section 5 concludes.

2 Preliminaries

A 0-1 normalized bargaining problem is given by a compact and convex set S ⊂ R
2
+ that

contains the origin. The Pareto frontier of S, PS, is given by y2 = F (y1) such that

1 = F (0), 0 = F (1), where F is strictly concave, continuous, and decreasing. Further, we

assume that F and F−1 are defined and continuously differentiable on some open U ⊃ [0, 1].

For a splitting-a-dollar problem, F is generated by concave, continuous, strictly increasing

and continuously differentiable functions u1 and u2 on [0,1] with ui(0) = 0 and ui(1) = 1

(i = 1, 2), such that given y1, with y1 = u1(q) for some q ∈ [0, 1], F (y1) = u2(1 − q). The

Nash solution here is given by

arg max
(y1,y2)∈S

y1y2 = {N∗(S)}.

Given a deadline T > 0 and a positive integer m, let T/m = ∆m which is the length of a

period. We count periods backwardly so that m is the first round of the bargaining game.

The rules of the sequential bargaining game with a random proposer are as follows. At each

period t Nature chooses a proposer with equal probabilities. The chosen proposer makes

a proposal qt in [0, 1], and another player replies by ”Yes” or ”No”. If the reply is ”Yes”,

then the game ends with an outcome described by (t, qt). If the reply is ”No”, then the

1Continuous counter part of this procedure is also proposed by Raiffa and discussed in Peters and Van

Damme(1991) (see also Livne(1989)).
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game moves into period t − 1 if t > 0, or ends with payoffs (a1, a2) (evaluated at t = 0)

if t = 0. We assume that a = (a1, a2) ∈ S but unlike Sjostrom (1991), a = (0, 0) is not

required.

Players maximize discounted expected utilities. The discount rate r > 0 is common to

players with the discount factor δ = δr,m = e−r∆m , which we often call ”δ given r and m”.

Next, we define the Raiffa solution R(S, a) with respect to termination payoffs a =

(a1, a2). Let z0 = (a1, a2). Given zj+1 =
(

zj
1
+F−1(zj

2
)

2
,

zj
2
+F (zj

1
)

2

)

, R(S, a) = limj→∞(zj) and

as in Sjostrom (1991), also one can write

R1(S, a) =
1

2

∞∑

j=0

(
F (zj

2) − zj
1

)
+ a1

and similarly for agent 2.

We investigate the subgame perfect equilibrium outcome of this game. To define this

concept, we have to define strategies first. The game starts at period m and players get

their outside alternatives at the end of period 0 if no agreement is reached prior to that.

We define first histories. Let φm = ∅, and for n = 0, . . . , m− 1 let φn = (it, wt, ρt)m
t=n+1,

where in round t player it is the proposer, wt is the offer made, and ρt = ”No” is the

reply. So φn is the history in the beginning of period n before the proposer has been

selected. Then a period n history for the proposer in is (φn, in) and a period n history for

the responder is (φn, in, wn).

A strategy of player i ∈ {1, 2} is a mapping σi that maps each period n history for

proposer i into [0, 1] and each period n history for responder i into {”Yes”,”No”}. A

strategy profile (σ1, σ2) is a subgame perfect equilibrium if conditional on each history, σi

is optimal given σj(j 6= i). Let us characterize now the equilibrium outcome.

If agent 1 is the proposer at the 0-th period, then he makes an offer F−1 (a2). The

corresponding allocation (F−1(a2), a2) is accepted by agent 2. If agent 1 is the responder,

then 2 makes an offer F (a1) which is accepted. This yields the expected payoffs, or the

continuation values for period 0:

(
z0
1 , z

0
2

)
=

(
1

2

(
a1 + F−1 (a2)

)
,
1

2
(F (a1) + a2)

)

.

For n ≥ 1 we have

(zn
1 , zn

2 ) =

(
1

2

(
δzn−1

1 + F−1
(
δzn−1

2

))
,
1

2

(
F
(
δzn−1

1

)
+ δzn−1

2

)
)

. (1)

As usual, an immediate agreement obtains and so the subgame perfect equilibrium pay-

offs are then (zm
1 , zm

2 ), and we would like to investigate their values in the limit as ∆m tends

to 0. We write z(t) for lim{zn(m) : ∆m → 0, n(m)/m → t, t > 0}, provided that the limit
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exists.

Example 1. Suppose that the frontier PS is given by y1+y2 = 1. Writing zn = (zn
1 , zn

2 ),

(1) becomes

zn+1 =

(
1

2
(δzn

1 + 1 − δzn
2 ) ,

1

2
(1 − δzn

1 + δzn
2 )

)

and if zn lies on the frontier, (which is the case for n > 0)

zn+1 − zn = (1 − δ)

(
1

2
− zn

1 ,
1

2
− zn

2

)

.

Directly solving, one obtains for i = 1, 2 that

zn+1
i = zn

i + (1 − δ)

(
1

2
− zn

i

)

=
1 − δ

2
+ δzn

i .

Solving this recursive equation gives us

zn+1
i = δn+1

i z0
i +

1 − δn+1

2
.

Recall that δn =
(
e−rT/m

)n
, where T/m = ∆m is the length of the time interval between

two consecutive offers. In the limit, as this time interval ∆m goes to 0, we have the solution

z = e−rT R(S, a) +
(
1 − e−rT

)
N∗(S).

Note that N∗(S) = (1/2, 1/2) and R(S, a) = z0 in this case.

One could replace the difference equation by a differential formula, i.e.

Dzn = (1 − δ)

(
1

2
− zn

i

)

(2)

or
d log

(
1
2
− zt

i

)

dt
= r

in the limit. We chose this representation of showing all allocations in each period by

respective current values, because this conforms with the representation given in terms of

differential equation by Coles and Wright (1998) and also it provides a nice interpretation

that the adjustment is made toward the ”global” Nash solution N∗(S), at a rate propor-

tional to the difference between the current value and Nash solution. However the present

value representation gives also a nice picture. In this example one sees that the process

jumps from e−rT a to e−rT R(S, a) and from there on it proceeds linearly to z with a direction

of (1/2, 1/2).
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For a general linear frontier y1/a + y2/b = 1, we shall have

zn =

(

δzn−1
1 +

a (1 − δ)

2
, δzn−1

2 +
b (1 − δ)

2

)

or as above

zn − zn−1 =

(

(1 − δ)
(a

2
− zn−1

1

)

, (1 − δ)

(
b

2
− zn−1

2

))

and

Dzn = (1 − δ) (N∗(S) − zn) (3)

where N∗ is (a/2, b/2).

3 The limit solution

The way differential equations were used in Example 1 turns out to be very convenient in

solving the general case as well. In fact Coles and Wright (1998) utilized this approach

in their analysis general random proposer games under non-stationary environments (see

also Coles and Muthoo 2003; McLennan 1988; Binmore 1987). We apply their result to

the case with a jump in the agreement set at the deadline. For a problem with a smooth

Pareto frontier, denote by f the derivative dF (y1)/dy1, y = (y1, y2) ∈ PS,

Here, the relevant ”local” Nash solution becomes a function of y, given by

(N1 (y) , N2 (y)) =

(

y1 + y2

−f

2
,
−fy1 + y2

2

)

and hence (2) would become

Dzn = (1 − δ) (N (zn) − zn) (4)

Thus, in general, the adjustment is made toward the local Nash solution at a rate

proportional to the difference, and along the way, the local Nash solution itself moves

toward the global Nash solution. We call the solution of (4) as the limit solution or the

limit outcome.

Our main result is

Theorem 1 Given S, a, T ,and r the limit outcome is x = (x1, F (x1)) such that

T =

∫ x1

R1(S,a)

1

r(N1 (z1, F (z1)) − z1)
dt

when R(S, a) 6= N∗(S) and if R(S, a) = N∗(S), x = N∗(S).
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Note that if R(S, a) = N∗(S),then Dzn = 0 and we obtain the theorem immediately.

In the case where R(S, a) 6= N∗(S), showing that z1 (T ) =
∫ T

0
r (N1 (z (t)) − z1 (t)) dt +

R1(S, a) holds is equivalent to prove the theorem. We shall prove this claim in several

steps. We denote by ‖·‖ the absolute sum norm: ‖x‖ =
∑

i|xi|.

Fix x ∈ S and the Raiffa solution R(S, a).

Lemma 1 Given ε > 0, there is ∆ > 0 and n with respect to a such that for ∆ < ∆,

‖R(S, a) − zn‖ < ε

holds.

Proof. We first give names to the mappings defining vectors zn:

G0 (z) =

(
1

2

(
z1 + F−1 (z2)

)
,
1

2
(z2 + F (z1))

)

,

G (z) = G0 (δz) .

Define also

Gν
0 = G0 ◦ · · · ◦ G0

︸ ︷︷ ︸

ν

and Gν = G ◦ · · · ◦ G
︸ ︷︷ ︸

ν

.

Since G0 and G are continuous, so are Gν
0 , and Gν . As δ tends to 1, G tends to

G0. Therefore Gν
0 (z) tends to Gν (z) given ν and z. Thus given ε > 0, there is ∆m and

n so that ‖Gν
0 (z) − R(S, a)‖ < ε/2 and ‖Gn−1

0 (z) − Gn−1
0 (z)‖ < ε/2. Since Gn−1 (z) =

zn, ‖R(S, a) − zn‖ < ε, as desired.

Next, we define z to be ”ε -close to PS”, if there is y in PS, the Pareto set of S, such

that ‖y − z‖ < ε.

Lemma 2 Given ε > 0, there is ∆ so that if ∆ < ∆, then it holds that if zn is ε -close to

PS, then δzn+1 is ε -close to PS.

Proof. Write z for G0 (z) and z′ for zn+1. Also write α for F (z′1)−z′1 and β for F−1 (z′2)−z′2.

Noting that z′ is ε/2 -close to the frontier if z is ε -close to the frontier.

We have

α + (1 − δ) z′1 +
α

β
(1 − δ) z′2 + β + (1 − δ) z′2 +

β

α
(1 − δ) z′1

≤ α + β + (1 − δ)

(

2 +
β

α
+

α

β

)

.

(If α = 0 or β = 0, then α/β or β/α should be substitutet by the values of gradients

of F or F−1 at z.) Since F is C1, one can find a bound on β/α + α/β, say B. Choosing

appropriate ∆, one can assure that (1 − δ) (2 + B) < ε/2 for each ∆ < ∆.
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For z in S\PS, define

h (z) =
F (δz1) − δz2

F−1 (δz2) − δz1
.

h is continuous and as z gets close to z′ ∈ PS and ∆ → 0, h(z) converges to F ′ (z′), since

F is C1. Given ε′ > 0 (and ε) for sufficiently small ∆, we have |h (z) − F ′ (z′′)| < ε′ for

each z and z′′ with z′′ ∈ PS and ‖z − z′′‖ < ε.

Proof of the Theorem. Now, since Coles and Wright (1998)’s result applies as the

process yields the two outcomes (δzn
1 , F (δzn

1 )) and (F−1(δzn
2 ), δzn

2 ), satisfying the backward

induction formula are ε-close to each other for sufficiently large n, their result implies the

formula in the theorem.

The solution obtained is located between the Nash and the Raiffa solution. A larger T

and a lower r moves the solution toward the Nash solution and a higher ai given aj (i 6= j),

shifts the Raiffa solution to the advantage of i and hence the solution changes in the same

direction.

Example 2. For some cases, one can compute the solution explicitly. Let u1(w) = wα

and u2(w) = wβ with 0 < α, β ≤ 1 where w is the amount of money in the ”divide-a-dollar”

problem (these functions are not C1 at the boundary, and so a is restricted to the interior

of S). Then

F (u) = (1 − u1/α)β and
−1

u + F/F ′
=

u1/(α−1)

α/β − (1 + α/β)u1/(α−1)

so that

T (z1) = −
2

r(1 + α/β)
log

[

α/β − (1 + α/β)z
1/α
1

α/β − (1 + α/β)(Ra
1)

1/α

]

or

x1 =

{[
α/β − (1 + α/β)(Ra

1)
1/α
]
e−(1+α/β)rT/2

}α

(1 + α/β)α
.

A change in the bargaining protocol affects the solution, especially through the change

in the limit solution as T vanishes. A sequential bargaining game with player i having the

last say yields the solution given by the same formula but the lower limit of the integral

replaced by the i -th coordinate of the i’s dictatorial solution instead of that of the Raiffa

solution. Under the random proposer protocol with unequal probabilities, the solution

is modified according to these probabilities. The Raiffa solution is changed so that the

speed of adjustment in the integral is modified, and the local and global Nash solutions are

replaced by the asymmetric Nash solutions with the weights given by these probabilities.

7



4 The axiomatization

One could view the limit solution as a function of a or e−rT a. This solution satisfies

sensitivity properties with respect to the ”threat point” as well as the individual rationality

property with respect to e−rT a. Apparently, IIA property is not met because R(S, a) does

not satisfy it. In the rest of this section, we show an attempt to axiomatize this solution

based on the axiomatization of the discrete Raiffa solution by Salonen (1986).

The class of problems we consider is Ψ = {B = (S, a, T, r) | S ⊂ R
2
+, a ∈ S, T > 0, r >

0}, where S is a compact and convex subsets such that weakly Pareto optimal elements

are Pareto optimal. Thus the class is slightly larger than the one we worked on earlier,

where in order to utilize Coles and Wright (1998)’s result, we assumed smooth Pareto

frontiers. We extend the definition of the ”derivative” f of the Pareto boundary function

F by first defining f(z1) = F ′(z1) if F is differentiable at z1. For other values of z1 we

proceed as follows. Denote by D the set of all points z1 at which F is differentiable. Then

let f(z1) = lim{f(z′1) | z′1 ↑ z1, z
′
1 ∈ D} if z1 < N∗

1 (S); f(z1) = lim{f(z′1) | z′1 ↓ z1, z
′
1 ∈ D}

if z1 > N∗
1 (S); and f(z1) = y such that N(z1, F (z1)) = N∗(S) if z1 = N∗

1 (S) (recall that

N(z1, F (z1)) is the local Nash solution at (z1, F (z1)).

For a later use, we denote by Γ the set of pairs (S, a) such that B = (S, a, T, r) ∈ Ψ, for

any r > 0, and T > 0. Extension of our solution to this class is of no problem because the

function representing the Pareto frontier of S is differentiable a.e., for all (S, a, T, r) ∈ Ψ,

and so the integral defining the solution is still well defined.

A solution ϕ to bargaining problems in Ψ maps each B = (S, a, T, r) ∈ Ψ to an element

of S. We use the Hausdorff metric on compact subsets of R
2
+ for emasuring the distance

between bargaining problems. A positive affine transformation (α, β) on R
2 with α =

(α1, α2) ∈ R
2
++ and β = (β1, β2) ∈ R

2 is defined by (α, β)(x) = (α1x1 + β1, α2x2 + β2)

for any x ∈ R
2. Denote by (α, β)B = ((α, β)S, (α, β)a, T, r) the resulting problem when a

positive affine transformation (α, β) is applied to a problem B = (S, a, T, r). Consider the

following three basic properties for solutions on Ψ.

Efficiency (E). ϕ(B) ∈ PS, for all B ∈ Ψ.

Continuity (Cont). ϕ is continuous with respect to a, T, r, and S, for all B =

(S, a, T, r) ∈ Ψ.

Scale Invariance (SI). ϕ((α, 0)B) = (α, 0)ϕ(B) for each problem B ∈ Ψ, and for any

positive affine transformation (α, 0).

Next we introduce a key decomposition property, called the end phase evaluation prop-

erty, that we utilize to single out a solution. Formally, we call the vector

g(S, a) = lim
T→0

ϕ(S, a, T, r) ∈ S

8



an end phase evaluation given (S, a) ∈ Ψ, if the limit on the right hand side exists and is

independent of r.

By this concept, we try to pin down the bargaining outcome when there is an infinites-

imally short period of time within which bargainers can exchange offers and counter offers.

This outcome could be different from the one with an immediate dead line, i.e., when there

is time for a single offer only. It is quite natural to assume that this outcome is independent

of r, given our continuity assumption. Then the effect of an outside alternative a is totally

captured by this evaluation, because if two problems share the same future outcomes (in

case of no agreement now), then the bargaining outcome to day must be the same. Indeed,

we postulate that the solution would remain the same, if two problems have the same end

phase evaluation given S and r. We formulate this as an independent axiom because it has

a clear interpretation, although later it turns out that it is implied by other axioms.

End Phase Evaluation Property (EPEP ). For each (S, a) ∈ Γ, the end phase

evaluation g(S, a) exists and is independent of r. If g(S, a) = g(S, a′), then ϕ(S, a, T, r) =

ϕ(S, a′, T, r).

Note that combined with the earlier properties, g should be a continuous, efficient, and

scale invariant mapping on Ψ.

Next we modify the independence of irrelevant alternatives axiom (IIA) to our dynamic

setting.

Time Path IIA (TPIIA). Let B = (S, a, T, r) ∈ Ψ and B′ = (S ′, a′, T, r) ∈ Ψ be such

that g(S, a) = g(S ′, a′) and S ′ ⊂ S. If for any T ′, 0 < T ′ ≤ T , ϕ((S, a, T ′, r)) ∈ S ′, then

ϕ(B) = ϕ(B′).

This property reflects the backward induction principle, and so the justification of our

IIA property in the dynamic setting may be more palatable than the the justification of

the ordinary IIA in static framework. Note that TPIIA implies EPEP .

Next we introduce properties concerning time dimension of the problems.

Time Decomposability (TD). Let B = (S, a, T, r) and B′ = (S, a, T ′, r) with T > T ′.

Then ϕ(B) = ϕ(S, ϕ(B′), T − T ′, r).

TD states that the solution is decomposable along the time dimension too. The prob-

lems B and B′ are otherwise the same except that in B there is more time to bargain

(T > T ′). Then players could solve B′ first, and use it’s solution as an outside alternative

in the new problem where the dead line is at T − T ′.

Next we formulate a symmetry property in our dynamic context. Let π̂ be the nontrivial

permutation on {1, 2, i.e., π̂(i) = j, i 6= j. The induced permutation on R
2 is denoted by

9



π so that π(x1, x2) = (x2, x1) for any (x1,x2) ∈ R
2. An element x ∈ R

2 is symmetric if

π(x1, x2) = (x1, x2), and a set S ⊂ R
2 is symmetric if π(S) = {π(x) | x ∈ S} satisfies

π(S) = S. A subset S ⊂ R
2 is symmetric relative to a ∈ R

2, if S − a is symmetric.

Dynamic Symmetry (DS). Given B = (S, a, T, r) ∈ Ψ, suppose S∩{x ∈ R
2
+ | x ≥ a}

is symmetric relative to e−rta, for all t ≤ T . Then {f(B)} is symmetric relative to e−rta.

This requirement says that if relative symmetry holds all the way from the end phase

to the initial phase, then the solution is determined according to the translated symmetry

condition. The precondition in DS is rather demanding, but when it is satisfied this axiom

becomes very stringent. In fact it can be applied only to problems with linear Pareto

frontiers unless a itself is symmetric.

We state our result for any end phase evaluation compatible with properties listed

above. But for the sake of simplicity, we write down two more properties for the end phase

evaluation g.

Individual Rationality (IR). g(S, a) ≥ a.

Symmetry (Sym). If S − a is symmetric, then {g(S, a)} is symmetric with respect to

the point a.

Also, in order to extend the limit solution to problems with non-differentiable Pareto

frontiers, we have to extend our definition of the local Nash solution N to this class. This

causes no problems and we omit the details.

Theorem 2 Suppose that g satisfies E, Cont, SI, Sym, and IR. Given g, there is a unique

solution, ϕg, satisfying E, Cont., SI, TD, TPIIA, and DS which is given by ϕg(S, a, T, r) =

(z1, F (z1)) satisfying T =

∫ z1

g1(S,a)

1
r{N1(z1,F (z1))−z1}

dt if g(S, a) 6= N∗(S),and ϕg(S, a, T, r) =

N∗(S) if g(S, a) = N∗(S).

Proof. It is clear that there are many mappings g satisfying E, Cont, SI, Sym and IR.

Given such a g, the solution ϕg given above is well defined by Theorem 1. Let us show first

that ϕg satisfies the axioms E, Cont, SI, TD, TPIIA and DS.

The axioms E and SI are clearly satisfied by ϕg. Let B = (S, a, T, r) ∈ Ψ be any

problem. Note that if a does not satisfy a1 = a2, then DS is applicable only if S is

symmetric with a linear Pareto frontier and ϕg clearly satisfies DS. Continuity of g implies

continuity of ϕg because the value of the integral defining ϕg depends continuously on

g1(S, a), z1 and N1(z1, F (z1)). Let B′ = (S ′, a′, T, r) be another problem that is related to

B as in the statement of TPIIA. Since g(S, a) = g(S ′, a′) and the segment of the Pareto

frontier connecting g(S, a) to ϕg(B) is the same in both problems, TPIIA is satisfied. The
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axiom TD is satisfied because an integral is an additive function of its integration limits.

Therefore ϕg satisfies all the axioms.

Let ϕ be any solution satisfying axioms E, Cont, SI, TD, TPIIA and DS, given that

g satisfies axioms E, Cont, SI, Sym and IR. We have to show that ϕ = ϕg.

For a symmetric problem B with a linear Pareto frontier, we have ϕ(B) = ϕg(B) by DS

and E. By SI, the same result carries to all problems with a linear Pareto frontier. Then

consider any two problems B = (S, a, T, r) and B′ = (S ′, a′, T, r) with the same end phase

evaluations, or g(S, a) = g(S ′, a′), and with the same segment of the Pareto frontier joining

g(S, a) and ϕ(B). If this segment is a straight line segment, then TPIIA guarantees that

ϕ = ϕg.

Take then any problem B = (S, a, T, r) with the Pareto frontier consisting of two linear

pieces L1 and L2. If g(S, a) and ϕ(B) are in the same segment Li, then ϕ(B) = ϕg(B).

Suppose then that g(S, a) ∈ L1 and ϕ(B) ∈ L2. Let B′ = (S, a, T ′, r) and choose T ′,

0 < T ′ < T in such a way that ϕ(B′) ∈ L1 ∩ L2. That is, the solution ϕ(B′) of B′ is

precisely at the kink of the Pareto frontier of B. This can be done thanks to continuity of

ϕ. Applying TD we get ϕ(B) = ϕg(B). By induction, ϕ(B′′) = ϕg(B′′) for any problem

B′′ with the Pareto frontier consisting of finitely many linear pieces.

Let finally B = (S, a, T, r) ∈ Ψ be an arbitrary problem. There exists a problem B′ =

(S ′, a, T, r) with a linear Pareto frontier supporting the Pareto set of B at g(S, a) = g(S ′, a).

Given a natural number n > 0, one can find a problem Bn = (Sn, a, T, r) within a distance

1/n (in the Hausdorff metric) from B such that (i) the Pareto frontier of Bn of finitely

many linear pieces and (ii) the Pareto frontier of Bn is the same as the Pareto frontier

of B′ within a sufficiently small neighbourhood of g(S, a). By the previous paragraph,

ϕ(Bn) = ϕg(Bn). By continuity, ϕ(B) = ϕg(B).

To single out our solution, we utilize axioms for g on Γ adopted by Salonen (1988).

Covariance (Cov). For any (S, a) ∈ Γ and a positive affine transformation (α, β) of

payoffs, if (S ′, a′) = ((α, β)S, (α, β)a), then g(S ′, a′) = (α, β)g(S, a).

Independence of Individually Irrational Alternatives (IIIA). For all (S, a),

(S ′, a) ∈ Γ, if S ∩ (a + R
2
+) = S ′ ∩ (a + R

2
+), then g(S, a) = g(S ′, a).

Given a problem (S, a) ∈ Γ, the ideal point M(S, a) ∈ R
2
+ of (S, a) is defined by

Mi(S, d) = max {yi | y ∈ S, y ≥ a} , i = 1, 2.

Weak Decomposability (WD). Let (S, a), (S ′, a) ∈ Γ be any two problems such that

S ⊂ S ′ and M(S, a) = M(S ′, a). Then there is a problem (S
′′

, a) with M(S ′′, a) = M(S, a)

such that g(S, a) = g(S, g(S ′′, a)) and g(S ′, a) = g(S ′, g(S ′′, a)).
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This property says that given any two problems with the same ideal points and outside

alternatives, one can find a third problem with the same ideal point and outside option in

such a way, that the solution can be used as a new outside option for the first two games

without changing their solution. One can easily see that WD is satisfied by the (discrete)

Raiffa solution R.

Lemma 3 (Salonen(1988)): There is a unique g which satisfies Sym, Cov, E, IIIA and

WD, which coincides with R.

Corollary 1 Suppose that g satisfies E, Cont, Cov, Sym, IIIA, and WD. Given g, the

unique solution ϕ satisfying E, Cont., SI, TD, TPIIA, and DS is ϕg, where g = R is the

Raiffa solution.

Apparently, if one wishes to derive the Nash bargaining solution as an end phase eval-

uation g, then requiring g to satisfy IIA (or its alternatives to characterize the Nash

bargaining solution; c.f. Dagan, Volij, and Winter (2002) and references therein) would

yield the desired result. Such a solution would be convenient for application as the solution

ϕg would be a sort of ”convex” combination of the Nash solution with respect to the best

alternative and the one with respect to the origin. As we mentioned earlier, the strategic

foundations of such a solution are not yet clear (except for the renowned Nash smoothing

argument (c.f. Nash (1953) and Van Damme (1987)).

All our results hold for n -person games as well. The main adjustement needed in the

proofs is that the integral should be replaced by a line integral in the formula of the limit

outcome.

5 Conclusion

In this paper, we investigated the limit solution of the subgame perfect equilibrium of

the sequential bargaining game with a deadline. The solution represents the bargaining

outcome when players can exchange offers and counteroffers infinitely often within a limited

amount of time. The outcome can be represented by a formula implying that under the

random proposer protocol with an equal probability, the outcome is close to the Raiffa

solution when the deadline is imminent, which we refer to as an end phase evaluation, and

the solution tends toward the time preference Nash solution as the deadline is moved further

ahead. We also gave an axiomatic foundation for this solution with a strong symmetry

reqirement. Although one may obtain the Nash bargaining solution with respect to the

best alternative outcome as an end phase evaluation under the IIA, its strategic foundation

in line with the sequential bargaining game is yet to be found.

12



References

[1] Binmore, K. (1987) ”Perfect Equilibria in Bargaining Models,” in K. Binmore and P.

Dasgupta (eds.), The Economics of Bargaining, Basil Blackwell, Oxford.

[2] Binmore, K., A. Rubinstein, and A. Wolinsly (1986) ”The Nash Bargaining Solution

in Economic Modelling,” Rand Journal of Economics, 17, 176-88.

[3] Chae, S. (1993) ”The n-person Nash Bargaining Solution with Time Preference,” Eco-

nomics Letters, 41, 21-24.

[4] Coles, M. and A. Muthoo (2003) ”Bargaining in a non-stationary environment,” Jour-

nal of Economic Theory, 109, 70-89.

[5] Coles, M. and R. Wright (1998) ”A Dynamic Equilibrium Model of Search, Bargaining,

and Money,” Journal of Economic Theory, 78, 32-54.

[6] Dagan, N., O. Volij, and E. Winter (2002) ”A Characterization of the Nash Bargaining

Solution,” Social Choice and Welfare, 19, 811-23.

[7] Fershtman, C. and D. Seidman (1993) ”Deadline Effects and Inefficient Delay in Bar-

gaining with Endogenous Commitment,” Journal of Economic Theory, 60, 306-21.

[8] Livne, Z. A. (1989) ”Axiomatic Characterization of the Raiffa and the Kalai-

Smorodinsky Solutions to the Bargaining Problem,” Operations Research, 37, 972-80.

[9] Ma, C. A. and M. Manove, (1993) ”Bargaining with Deadlines and Imperfect Player

Control,” Econometrica, 61, 1313-39.

[10] McLennan, A. (1988) ”Bargaining between two symmetrically informed agents,”

mimeo.

[11] Nash, J. (1950) ”The Bargaining Problem,” Econometrica, 18, 155-62.

[12] Nash, J. (1953) ”Two-person Cooperative Games,” Econometrica, 21, 128-40.

[13] Peters, H. and E, Van Damme (1991) ”Characterizing the Nash and Raiffa bargaining

solutions by disagreement point axioms,” Mathematics of Operations Research, 16,

447-461.

[14] Raiffa, H. (1951) ”Arbitration Schemes for Generalized Two Person Games,” Univer-

sity of Michigan.

13



[15] Raiffa, H. (1953) ”Arbitration schemes for generalized two-person games,” in H. Kuhn

and A. Tucker eds., Contributions to the theory of games (Princeton University Press,

Princeton, NJ).

[16] Raiffa, H. (2002) Negotiation Analysis, Belkmap Harvard.

[17] Roth, A., J. K. Murnighan, and F. Schoumaker, (1988) ”The Deadline Effect in Bar-

gaining: Some Experimental Evidence,” American Economic Review, 78, 806-23.

[18] Rubinstein, A. (1982) ”Perfect Equilibrium in a Bargaining Model,” Econometrica,

50, 97-110.

[19] Salonen, H. (1988) ”Decomposable Solutions for N-Person Bargaining Games,” Euro-

pean Journal of Political Economy, 4, 333-347.

[20] Shaked, A. and J. Sutton (1984) ”Involuntary Unemployment as a Perfect Equilibrium

in a Bargaining Model,” Econometrica, 52, 1351-64.

[21] Simsek, A. and M. Yildiz (2008) ”Durable Bargaining Power and Stochastic Dead-

lines,” MIT, mimeo.

[22] Sjostrom, T. (1991) ”Stahl’s bargaining model,” Economic Letters, 36, 153-157.

[23] Stahl, I. (1972) Bargaining Theory, Stockholm School of Economics.

[24] Van Damme, E. (1987) Stability and Perfection of Nash Equilibria, Springer Verlag,

Berlin Heidelberg.

14



Aboa  Centre  for  Economics  (ACE) was founded in 1998 by the
departments of economics at the Turku School of Economics, Åbo
Akademi University and University of Turku. The aim of the
Centre is to coordinate research and education related to
economics in the three universities.

Contact information: Aboa Centre for Economics, Turku School of
Economics, Rehtorinpellonkatu 3, 20500 Turku, Finland.

Aboa Centre for Economics (ACE) on Turun kolmen yliopiston
vuonna 1998 perustama yhteistyöelin. Sen osapuolet ovat Turun
kauppakorkeakoulun kansantaloustieteen oppiaine, Åbo
Akademin nationalekonomi-oppiaine ja Turun yliopiston
taloustieteen laitos. ACEn toiminta-ajatuksena on koordinoida
kansantaloustieteen tutkimusta ja opetusta Turun kolmessa
yliopistossa.

Yhteystiedot: Aboa Centre for Economics, Kansantaloustiede,
Turun kauppakorkeakoulu, 20500 Turku.

www.ace-economics.fi

ISSN 1796-3133


